

				Sub	ject	Co	de: l	KCS	8056
Roll No:									

B. TECH (SEM-V) THEORY EXAMINATION 2020-21 APPLICATION OF SOFT COMPUTING

Time: 3 Hours Total Marks: 100

Note: 1. Attempt all Sections. If require any missing data; then choose suitably.

SECTION A

1. Attempt all questions in brief.

 $2 \times 10 = 20$

Printed Page: 1 of 2

Q no.	Question	Mark	С
		S	О
a.	Show the importance of fuzzy sets over classical sets.	2	3
b.	Identify the necessity of bias in neural network.	2	1
c.	Consider set $X = \{2, 4, 6, 8, 10\}$. Find its power set, cardinality, and cardinality of power set.	2	3
d.	Define time dependent fuzzy logic.	2	3
e.	Differentiate between soft computing and hard computing.	2	1
f.	Justify how rank selection method is different from roulette wheel selection method?	2	5
g.	Discuss the impact of weight in ANN.	2	2
h.	Differentiate between supervised and unsupervised learning.	2	1
i.	Differentiate between absolute and relative Quantifier.	2	4
j.	Analyze how convergence of GA is achieved.	2	5

SECTION B

2. Attempt any *three* of the following:

 $3 \times 10 = 30$

Q no.	Question	Mark	С
		S	О
a.	Describe multilayer perception model. Does perceptron require supervised	10	1
	learning? If no, what does is require? Support your answer.		
b.	Explain Generation wife. What are the different applications of Genetic	10	5
	Algorithm?		
c.	Draw the architecture of back propagation algorithm. State the importance of	10	2
	Back propagation algorithm.		
d.	Illustrate various defuzzification methods in details.	10	4
e.	Discuss in detail how crisp logic is different from fuzzy logic.	10	3

SECTION C

3. Attempt any *one* part of the following:

Q no.	Question	Mark	С
		S	Ο
a.	Apply Hebb rule method to develop logical AND function (take bipolar inputs and targets).	10	1
b.	Differentiate between recurrent network and multilayer feed forward network.	10	1

4. Attempt any *one* part of the following:

Q n	O. Question	Mark	C
		S	О
a.	Illustrate Multilayer perceptron model in detail. Compare feed-forward and feedback networks.	10	2
b.	Draw the architecture of back propagation algorithm. State the importance of Back propagation algorithm.	10	2

				Sub	ject	Co	de: l	KCS	8056
Roll No:									

Printed Page: 2 of 2

5. Attempt any *one* part of the following:

Q no.			Question					Mark	С
								S	О
a.	Consider fuzzy relati	ions:						10	3
		Y1 Y2				Z1	Z2		
	R= X1	0.3 0.2	S=	=	Y1	0.6	0.1		
	X2	0.5 0.8			Y2	0.3	0.5		
	X3	0.7 0.4							
	Find T=RoS								
	a. Usi	ing max-mir	n composition						
	b. Usi	ing max-pro	duct composition						
	Using max-average c	composition	-						
b.	Discuss Fuzzification	n? Explain a	ny three methods o	of f	uzzifi	cation	in detail.	10	3

6. Attempt any *one* part of the following:

Q no.	Question	Mark	С
		S	О
a.	We want to compare two liquid level controllers for their control levels and	10	4
	flow Speed. The following values of flow speed and liquid control levels were recorded.		
	Flow speed(X): 0 20 40 60 80 100		
	Level1 (L1): 0 0.5 0.35 0.75 0.95 1.0		
	Level (L2): 0 0.45 0.55 0.65 0.9 1.0		
	Show the output of the following:		
	(a) μ L1 U L2(x) (b) μ L1 \cap L2(x) (c) μ L1 ^C (x) (d) μ L2 ^C (x) (e) μ L1 ^C U L2 ^C (x) (f) μ L1 ^C \cap L2(x)		
	$(e) \mu L1 \cup L2 (x) (1) \mu L1 + L2 (x) (g) \mu L1 + L2(x)$ $(h) \mu L1 \cup L2^{c}(x) (i) \mu L1 \cup L1^{c}(x)$		
b.	With a neat block diagram explain the architecture of a fuzzy logic controller.	10	4

7. Attempt any *one* part of the following:

Q no.	Question	Mark	C
	90.	S	Ο
a.	Explain various operators involved in Genetic Algorithm. What are the various	10	5
	types of crossover and mutation techniques? Create an example to show these		
	operators.		
b.	Design and discuss the flowchart of GA. How Genetic algorithms are very	10	5
	different from most of the traditional optimization methods?		